Overall Rating Silver - expired
Overall Score 56.90
Liaison Cody Friend
Submission Date March 19, 2019
Executive Letter Download

STARS v2.1

University of Nebraska at Omaha
OP-5: Building Energy Consumption

Status Score Responsible Party
Complete 3.66 / 6.00 Sarah Burke
Sustainability Coordinator
Student Affairs
"---" indicates that no data was submitted for this field

Part 1

This credit is based on energy inputs from offsite sources and electricity produced by onsite renewables. When the institution purchases one fuel and uses it to produce heat and/or power, you should enter only what is purchased. For example, if the institution purchases natural gas to fuel a CHP system and produce steam and electricity, only the purchased natural gas should be reported.

Figures needed to determine total building energy consumption:
Performance Year Baseline Year
Grid-purchased electricity 186,637.55 MMBtu 177,853.85 MMBtu
Electricity from on-site renewables 0 MMBtu 0 MMBtu
District steam/hot water (sourced from offsite) 0 MMBtu 0 MMBtu
Energy from all other sources (e.g., natural gas, fuel oil, propane/LPG, district chilled water, coal/coke, biomass) 214,008.88 MMBtu 192,259.34 MMBtu
Total 400,646.43 MMBtu 370,113.19 MMBtu

Start and end dates of the performance year and baseline year (or 3-year periods):
Start Date End Date
Performance Year July 1, 2017 June 30, 2018
Baseline Year July 1, 2010 June 30, 2013

A brief description of when and why the building energy consumption baseline was adopted (e.g. in sustainability plans and policies or in the context of other reporting obligations):
Energy consumption baseline was taken from FY11-13. These years were chosen to give us a solid historical representation of average use based on reliable data.

Gross floor area of building space:
Performance Year Baseline Year
Gross floor area of building space 4,750,000 Gross square feet 3,856,559 Gross square feet

Source-site ratio for grid-purchased electricity:
3.14

Total building energy consumption per unit of floor area:
Performance Year Baseline Year
Site energy 0.08 MMBtu per square foot 0.10 MMBtu per square foot
Source energy 0.17 MMBtu per square foot 0.19 MMBtu per square foot

Percentage reduction in total building energy consumption (source energy) per unit of floor area from baseline:
13.47

Part 2 

Degree days, performance year (base 65 °F / 18 °C):
Degree days (see help icon above)
Heating degree days 6,041 Degree-Days (°F)
Cooling degree days 1,544 Degree-Days (°F)

Floor area of energy intensive space, performance year:
Floor Area
Laboratory space 211,191 Square feet
Healthcare space 0 Square feet
Other energy intensive space

EUI-adjusted floor area, performance year:
5,625,181 Gross square feet

Building energy consumption (site energy) per unit of EUI-adjusted floor area per degree day, performance year:
9.39 Btu / GSF / Degree-Day (°F)

Optional Fields 

Documentation (e.g. spreadsheet or utility records) to support the performance year energy consumption figures reported above:
---

A brief description of the institution's initiatives to shift individual attitudes and practices in regard to energy efficiency (e.g. outreach and education efforts):
The Sustainability website provides some tips in regards to energy efficiency and conservation.

A brief description of energy use standards and controls employed by the institution (e.g. building temperature standards, occupancy and vacancy sensors):
UNO Housing- MV and UV- Thermostats are locked at 68-75 degrees. Interior lights in UV and MV clubhouses on motion sensors. Baxter Arena: The temperature of the hot water that is used to heat the building is based on the outside air temperature...the colder it is, the hotter the water gets. Rather than allowing individuals to set their office, locker room, or space temperatures, they control it through their computer-based building controls in the ice plant. This computer allows them to schedule event temperatures and humidity levels in advance and once the event is over it reverts back to their low occupancy set points automatically. As for exterior lighting, photocells monitor light levels, and as needed, release lighting contactors to turn on or off the lights. The building had a contractor come in a teach the employees on how to run the ice plant at a more efficient rate. This will allow the ice chillers to run at a better capacity UNO Facilities: A building temperature policy was adopted in May 2009 to conserve energy and make the best use of our resources. Occupancy sensors have been installed in all new construction and major renovations in the last 10 years or so. All but two buildings have lighting retrofits and lighting control systems in place. This includes timers, daylight harvesting, and occupancy sensors. Energy metering (electricity, gas, chilled water, and steam) was installed in all major buildings to monitor UNO's energy use. Unfortunately, many of these early meters failed. The early meters have been replaced with new technology and more reliable readings of energy use information for all major buildings. Vending machines have been slowly replaced by ones with motion sensors, lightless models, or LED-lit machines. This was largely done because other users demanded it and vendors made large-scale changes in machine selection. http://www.unomaha.edu/facilities/documents/buildingtemperaturepolicy3-3-09.pdf

A brief description of Light Emitting Diode (LED) lighting and other energy-efficient lighting strategies employed by the institution:
UNO Housing: All interior fixtures at MV and UV are LED. All exterior fixtures at UV are LED. MV pole lights are LED and back entry lights are LED. Baxter Arena: There are times that are controlled through the lighting system. This allows the use of lights, TVs, and other electronic devices to turn off when no one is in the building to turn them off. All restrooms, offices, and other small areas are controlled by motion detection lighting UNO Facilities: LEDs have been installed in most of the major buildings on campus, to replace incandescent and fluorescent tubes. LED lighting has been used in classrooms and public access areas. LEDs have replaced HIDs in the parking structures, parking lots, and public sidewalks.

A brief description of passive solar heating, geothermal systems, and related strategies employed by the institution:
The Barn at Glacier Creek Preserve uses geothermal heating and cooling. (This is not individually metered, so we are unable to report any values) http://www.unomaha.edu/college-of-arts-and-sciences/biology/nature-preserves/glacier-creek.php#Barn

A brief description of co-generation employed by the institution, e.g. combined heat and power (CHP):
---

A brief description of the institution's initiatives to replace energy-consuming appliances, equipment and systems with high efficiency alternatives (e.g. building re-commissioning or retrofit programs):
UNO Housing: UV's HVAC has been replaced by new heat pumps and AC units, including the clubhouse. It now uses R410A freon which is better for the environment. Went from a seasonal energy efficiency rating of ~12 to a rating of 16. UNO Facilities: This is an ongoing effort, driven by Facilities Management & Planning and encouraged by Procurement. New construction and renovations will incorporate lighting control systems to provide daylight harvesting, two-level lighting in offices, vacancy sensors in common areas such as classrooms and conference rooms. It is a practice - not a policy - to replace appliances, equipment, and systems with energy-efficient alternatives.

The website URL where information about the programs or initiatives is available:
Additional documentation to support the submission:
---

Data source(s) and notes about the submission:
---

The information presented here is self-reported. While AASHE staff review portions of all STARS reports and institutions are welcome to seek additional forms of review, the data in STARS reports are not verified by AASHE. If you believe any of this information is erroneous or inconsistent with credit criteria, please review the process for inquiring about the information reported by an institution or simply email your inquiry to stars@aashe.org.