Overall Rating | Gold |
---|---|
Overall Score | 76.52 |
Liaison | Maria Kirrane |
Submission Date | July 28, 2022 |
University College Cork - National University of Ireland, Cork
OP-5: Building Energy Efficiency
Status | Score | Responsible Party |
---|---|---|
5.11 / 6.00 |
Pat
Mehigan Energy Manager Buildings and Estates |
Part 1. Site energy use per unit of floor area
Performance year energy consumption
kWh | MMBtu | |
Imported electricity | 27,723,772 Kilowatt-hours | 94,593.51 MMBtu |
Electricity from on-site, non-combustion facilities/devices (e.g., renewable energy systems) | 57,100 Kilowatt-hours | 194.83 MMBtu |
Stationary fuels and thermal energy, performance year (report MMBtu):
MMBtu | |
Stationary fuels used on-site to generate electricity and/or thermal energy | 84,086 MMBtu |
Imported steam, hot water, and/or chilled water | 0 MMBtu |
Total site energy consumption, performance year:
Performance year building space
Floor area of energy intensive space, performance year:
Floor area | |
Laboratory space | 54,513 Square meters |
Healthcare space | 12,891 Square meters |
Other energy intensive space | 16,385 Square meters |
EUI-adjusted floor area, performance year:
Performance year heating and cooling degree days
Degree days | |
Heating degree days | 1,935 Degree-Days (°C) |
Cooling degree days | 102 Degree-Days (°C) |
Total degree days, performance year:
Performance period
Start date | End date | |
Performance period | Jan. 1, 2020 | Dec. 31, 2020 |
Metric used in scoring for Part 1
Part 2. Reduction in source energy use per unit of floor area
Baseline year energy consumption
STARS 2.2 requires electricity data in kilowatt-hours (kWh). If a baseline has already been established in a previous version of STARS and the institution wishes to continue using it, the electricity data must be re-entered in kWh. To convert existing electricity figures from MMBtu to kWh, simply multiply by 293.07107 MMBtu/kWh.
kWh | MMBtu | |
Imported electricity | 24,175,965 Kilowatt-hours | 82,488.39 MMBtu |
Electricity from on-site, non-combustion facilities/devices (e.g., renewable energy systems) | 0 Kilowatt-hours | 0 MMBtu |
Stationary fuels and thermal energy, baseline year (report MMBtu):
MMBtu | |
Stationary fuels used on-site to generate electricity and/or thermal energy | 108,052 MMBtu |
Imported steam, hot water, and/or chilled water | 0 MMBtu |
Total site energy consumption, baseline year:
Baseline year building space
Baseline period
Start date | End date | |
Baseline period | Jan. 1, 2008 | Dec. 31, 2008 |
A brief description of when and why the energy consumption baseline was adopted:
Source energy
Total energy consumption per unit of floor area:
Site energy | Source energy | |
Performance year | 0.63 MMBtu per square meter | 0.97 MMBtu per square meter |
Baseline year | 1.10 MMBtu per square meter | 1.57 MMBtu per square meter |
Metric used in scoring for Part 2
Optional Fields
A brief description of the institution's initiatives to shift individual attitudes and practices in regard to energy efficiency:
Plant:
Plant (or equipment) encompasses the services that we use in all our buildings, for example lighting, air ventilation, heating equipment and associated pumps. From our learnings over the years it is estimated that these services would account for 50% of the Universities energy consumption and as such need to be closely managed. We achieve this through our building management systems which ensures that the equipment is only running when it is required while the engineering services department ensure that the plant is maintained to ensure efficient operation when running.
Process:
Using our ISO 50001 certified energy management system, the University ensures that the process are in place to manage and promote energy conservation. For example, our energy policy ensures that our significant energy users are closely managed to eliminate energy wastage while our energy audit process ensures that regular energy audits are undertaken where energy saving opportunities are identified and undertaken by our minor projects department. Finally, our design processes ensure that all future buildings or renovation programs have sustainably and energy efficiency as a key design deliverable.
People:
Most important are our people who use or manage the energy consuming equipment on site. From our craft operators, lab technicians, IT services departments to our students each and every one of us have a big part to play in reducing our total energy consumption. It is the aim of the B&E office to engage, encourage and enable our staff and students to conserve energy when they can, whether that’s turning off lights and PC’s when leaving the rooms or switching off lab equipment and services when not in use.
Using the 3P approach described the office is currently focussing on our significant energy users, where any energy efficiency measures implemented, can have a positive impact on our annual energy consumption.
A brief description of energy use standards and controls employed by the institution:
Use of CO2 control on HVAC systems
Weather compensation on boiler systems.
Presence detection for lighting controls.
Weekly energy scorecards produced and communicated to our SEU's.
A brief description of Light Emitting Diode (LED) lighting and other energy-efficient lighting strategies employed by the institution:
We have a rolling campaign underway to replace all lighting with LED units. Areas are selected based on the age, condition and energy consumption of the existing lighting infrastructure.
Some of the control strategies include:
Presence / Absence detection.
Daylight dimming.
Closing of areas during low occupancy rates and opening as required.
Time schedules.
Corridoors / stairwell dimming.
A brief description of passive solar heating, geothermal systems, and related strategies employed by the institution:
Heat pump operation using local river bed to provide heating / cooling to Glucksman Gallery.
Heat pump operation using local river to provide heating to IT building.
Heat pump operation using local aquifer to provide heating to the ERI building.
Extensive amount of heat recovery from process equipment / data centres / lab spaces.
A number of solar arrays for heating of domestic hot water.
Naturally ventilated buildings.
Use of glazing on south facing buildings to maximise daylight / solar gain.
A brief description of co-generation employed by the institution:
A brief description of the institution's initiatives to replace energy-consuming appliances, equipment, and systems with high efficiency alternatives:
Website URL where information about the institution’s energy conservation and efficiency program is available:
Additional documentation to support the submission:
Data source(s) and notes about the submission:
The information presented here is self-reported. While AASHE staff review portions of all STARS reports and institutions are welcome to seek additional forms of review, the data in STARS reports are not verified by AASHE. If you believe any of this information is erroneous or inconsistent with credit criteria, please review the process for inquiring about the information reported by an institution or simply email your inquiry to stars@aashe.org.