Overall Rating | Platinum |
---|---|
Overall Score | 86.26 |
Liaison | Karen Oberer |
Submission Date | Jan. 17, 2024 |
McGill University
OP-5: Building Energy Efficiency
Status | Score | Responsible Party |
---|---|---|
4.25 / 6.00 |
Josh
Huizinga Energy Manager Facilities Management and Ancillary Services |
Part 1. Site energy use per unit of floor area
Performance year energy consumption
kWh | MMBtu | |
Imported electricity | 175,634,991 Kilowatt-hours | 599,266.59 MMBtu |
Electricity from on-site, non-combustion facilities/devices (e.g., renewable energy systems) | 0 Kilowatt-hours | 0 MMBtu |
Stationary fuels and thermal energy, performance year (report MMBtu):
MMBtu | |
Stationary fuels used on-site to generate electricity and/or thermal energy | 547,168 MMBtu |
Imported steam, hot water, and/or chilled water | 35,064 MMBtu |
Total site energy consumption, performance year:
Performance year building space
Floor area of energy intensive space, performance year:
Floor area | |
Laboratory space | 83,105 Square meters |
Healthcare space | 10,387 Square meters |
Other energy intensive space | 59,144 Square meters |
EUI-adjusted floor area, performance year:
Performance year heating and cooling degree days
Degree days | |
Heating degree days | 4,162 Degree-Days (°C) |
Cooling degree days | 400 Degree-Days (°C) |
Total degree days, performance year:
Performance period
Start date | End date | |
Performance period | May 1, 2021 | April 30, 2022 |
Metric used in scoring for Part 1
Part 2. Reduction in source energy use per unit of floor area
Baseline year energy consumption
STARS 2.2 requires electricity data in kilowatt-hours (kWh). If a baseline has already been established in a previous version of STARS and the institution wishes to continue using it, the electricity data must be re-entered in kWh. To convert existing electricity figures from MMBtu to kWh, simply multiply by 293.07107 MMBtu/kWh.
kWh | MMBtu | |
Imported electricity | 180,892,971 Kilowatt-hours | 617,206.82 MMBtu |
Electricity from on-site, non-combustion facilities/devices (e.g., renewable energy systems) | 0 Kilowatt-hours | 0 MMBtu |
Stationary fuels and thermal energy, baseline year (report MMBtu):
MMBtu | |
Stationary fuels used on-site to generate electricity and/or thermal energy | 695,040 MMBtu |
Imported steam, hot water, and/or chilled water | 7,948 MMBtu |
Total site energy consumption, baseline year:
Baseline year building space
Baseline period
Start date | End date | |
Baseline period | May 1, 2012 | April 30, 2013 |
A brief description of when and why the energy consumption baseline was adopted:
Source energy
Total energy consumption per unit of floor area:
Site energy | Source energy | |
Performance year | 1.22 MMBtu per square meter | 1.83 MMBtu per square meter |
Baseline year | 1.66 MMBtu per square meter | 2.43 MMBtu per square meter |
Metric used in scoring for Part 2
Optional Fields
A brief description of the institution's initiatives to shift individual attitudes and practices in regard to energy efficiency:
Our focus is on performing infrastructure projects to promote energy efficiency across the campus by upgrading major HVAC and distribution systems. Renovation projects include installing occupancy sensors to automatically control lights and HVAC systems when unoccupied.
------------
Compared to other spaces on campus, labs consume vast amounts of materials and rely on energy-intensive equipment. McGill's new Sustainable Labs certification program includes criteria for reducing energy use in labs. The checklist requires applicants to take the following actions:
1. We turn off lights at the end of the day or we have motion sensitive lights installed
2. We have discussed and decided which pieces of equipment must be left on all the time, which should be turned off daily and which may be turned off until needed.
3. We turn off or unplug equipment when it is not in use or use outlet timers to turn off equipment automatically
4. We repair and maintain all equipment to ensure safety and efficiency
5. We ensure that the coils and the filters of our freezers and refrigerators are kept clean of dust buildup
6. We remove frost build up from our freezers regularly
7. We do a full defrost of our freezers at least once per year.
8. We maintain a record or inventory of samples and reagents in our fridges and freezers.
9. We close fume hood sashes when we are not actively working in the fume hood.
10. We have placed prompts to remind users to close the fume hood.
11. We don’t work in the fume hood with the sash pulled all the way up.
12. We don’t use the fume hood to evaporate chemicals or reagents. We dispose of them in a waste container instead.
https://www.mcgill.ca/sustainability/engage/sustainable-labs
A brief description of energy use standards and controls employed by the institution:
The standards cover energy efficiency requirements for lighting, HVAC, insulation, MEP, and commissioning. There are also specific standards requiring energy models to be performed and mandate designs to be 20% better than energy code ASHRAE 90.1-2010 (Appendix G).
Additionally the University must follow provincial regulations which mandate all new construction and major renovation projects to use mostly renewable energy (80%+ renewable, depending on project). This is typically achieved with electric heating systems that utilize Hydro-Québec's low carbon electricity (which comes from large Hydro plants).
See: https://www.mcgill.ca/buildings/design-standards
A brief description of Light Emitting Diode (LED) lighting and other energy-efficient lighting strategies employed by the institution:
These requirements can be found here (French only):
https://www.mcgill.ca/buildings/files/buildings/mcgill_26_50_00_eclairage3_1.pdf
A brief description of passive solar heating, geothermal systems, and related strategies employed by the institution:
A brief description of co-generation employed by the institution:
- Québec's electricity is 99% from renewable sources, therefore, generating electricity on campus would increase our GHGs.
- Québec's electricity rates are very competitive and deploying a cogeneration system doesn't offer a viable payback with the current rate structure.
A brief description of the institution's initiatives to replace energy-consuming appliances, equipment, and systems with high efficiency alternatives:
Website URL where information about the institution’s energy conservation and efficiency program is available:
Additional documentation to support the submission:
Data source(s) and notes about the submission:
The information presented here is self-reported. While AASHE staff review portions of all STARS reports and institutions are welcome to seek additional forms of review, the data in STARS reports are not verified by AASHE. If you believe any of this information is erroneous or inconsistent with credit criteria, please review the process for inquiring about the information reported by an institution or simply email your inquiry to stars@aashe.org.