Overall Rating | Silver |
---|---|
Overall Score | 59.66 |
Liaison | Christina Erickson |
Submission Date | Aug. 15, 2022 |
Champlain College
OP-5: Building Energy Efficiency
Status | Score | Responsible Party |
---|---|---|
4.95 / 6.00 |
Tim
Van Woert Director Facilities |
Part 1. Site energy use per unit of floor area
Performance year energy consumption
kWh | MMBtu | |
Imported electricity | 6,260,258 Kilowatt-hours | 21,360.00 MMBtu |
Electricity from on-site, non-combustion facilities/devices (e.g., renewable energy systems) | 170,652.64 Kilowatt-hours | 582.27 MMBtu |
Stationary fuels and thermal energy, performance year (report MMBtu):
MMBtu | |
Stationary fuels used on-site to generate electricity and/or thermal energy | 22,723.60 MMBtu |
Imported steam, hot water, and/or chilled water | 0 MMBtu |
Total site energy consumption, performance year:
Performance year building space
Floor area of energy intensive space, performance year:
Floor area | |
Laboratory space | 764 Square feet |
Healthcare space | 0 Square feet |
Other energy intensive space | 25,646 Square feet |
EUI-adjusted floor area, performance year:
Performance year heating and cooling degree days
Degree days | |
Heating degree days | 6,369 Degree-Days (°F) |
Cooling degree days | 872 Degree-Days (°F) |
Total degree days, performance year:
Performance period
Start date | End date | |
Performance period | July 1, 2020 | June 30, 2021 |
Metric used in scoring for Part 1
Part 2. Reduction in source energy use per unit of floor area
Baseline year energy consumption
STARS 2.2 requires electricity data in kilowatt-hours (kWh). If a baseline has already been established in a previous version of STARS and the institution wishes to continue using it, the electricity data must be re-entered in kWh. To convert existing electricity figures from MMBtu to kWh, simply multiply by 293.07107 MMBtu/kWh.
kWh | MMBtu | |
Imported electricity | 5,173,307 Kilowatt-hours | 17,651.32 MMBtu |
Electricity from on-site, non-combustion facilities/devices (e.g., renewable energy systems) | 0 Kilowatt-hours | 0 MMBtu |
Stationary fuels and thermal energy, baseline year (report MMBtu):
MMBtu | |
Stationary fuels used on-site to generate electricity and/or thermal energy | 26,414.70 MMBtu |
Imported steam, hot water, and/or chilled water | 0 MMBtu |
Total site energy consumption, baseline year:
Baseline year building space
Baseline period
Start date | End date | |
Baseline period | July 1, 2006 | June 30, 2007 |
A brief description of when and why the energy consumption baseline was adopted:
Source energy
Total energy consumption per unit of floor area:
Site energy | Source energy | |
Performance year | 0.05 MMBtu per square foot | 0.10 MMBtu per square foot |
Baseline year | 0.08 MMBtu per square foot | 0.15 MMBtu per square foot |
Metric used in scoring for Part 2
Optional Fields
A brief description of the institution's initiatives to shift individual attitudes and practices in regard to energy efficiency:
* New employee/faculty orientation - includes sustainability information
* Student Eco-Rep outreach in the residential halls
* Periodic email reminders from Facilities staff - especially during times of extreme cold and during breaks
A brief description of energy use standards and controls employed by the institution:
Some residential halls have temperature limit controls
Approximately 1/4 of all buildings have occupancy sensors for lighting levels
Lakeside building has daylight adjusted lighting on 2 out of 3 floors
Modulation of boiler water temperatures
Hot water discharge is regulated with hot water mixing valves
A brief description of Light Emitting Diode (LED) lighting and other energy-efficient lighting strategies employed by the institution:
Parking lot lights are being upgraded over time to LED fixtures. Most have now been converted.
Several buildings have had interior lighting retrofits, funded by our Green Revolving Fund and/or Facilities budget, including: residential halls Pearl, Lyman, Jensen, Summit, 396 Main Street, Rowell, Cushing; Mic/Library Ground Floor; and the Garden house/Career Collaborative.
A brief description of passive solar heating, geothermal systems, and related strategies employed by the institution:
How does it work? The geothermal heat pump system uses the earth as the energy source. The earth's steady temperature provides extremely efficient heating in winter and cooling in summer. This mitigates electric costs, making it a much more affordable system compared to alternative electrically-based systems, and is a sustainable alternative to fossil fuels. The geothermal system operates using interconnected systems. The first is a groundwater system, consisting of a source well and injection well. The wells are connected to a natural underground aquifer that provides the thermal mass that creates the water base temperature of 50°F to 53°F for the system. The water that cycles into the pumps is on a separate closed-loop system that transfers heat directly through a highly efficient plate and frame heat exchanger. The two circulated fluids never come in contact, thus preventing aquifer contamination. Perry Hall, for example, contains 37 heat pumps which transfer energy throughout the building. One side of the building can be cooled while the other side is heated, which is relevant on a sunny winter day when one side is heated by the sun and the ambient temperature cools the other side. This ability to transfer energy throughout the building allows for an extremely efficient operation.
See more at www.champlain.edu/geothermal
A brief description of co-generation employed by the institution:
A brief description of the institution's initiatives to replace energy-consuming appliances, equipment, and systems with high efficiency alternatives:
Website URL where information about the institution’s energy conservation and efficiency program is available:
Additional documentation to support the submission:
Data source(s) and notes about the submission:
The information presented here is self-reported. While AASHE staff review portions of all STARS reports and institutions are welcome to seek additional forms of review, the data in STARS reports are not verified by AASHE. If you believe any of this information is erroneous or inconsistent with credit criteria, please review the process for inquiring about the information reported by an institution or simply email your inquiry to stars@aashe.org.